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ABSTRACT 

Suppose that  G is a finite p-solvable group and let P E Sylp(G). In this 

note, we prove that  the character table of G determines if NG(P)/P is 

abelian. 

1. I n t r o d u c t i o n  

One of the classical problems in character theory is to determine what properties 

of a finite group G can be read off from its character table. 

THEOREM A: Suppose that G is p-solvable and let P C Sylp(G). Then the 

character table of  G determines i f  N G ( P ) / P  is abelian. 

Our arguments heavily use a strong form of the Alperin-McKay conjecture for 

p-solvable groups which does not hold in general. Consequently, with our present 

approach we cannot decide if Theorem A is true or false for every finite group. 

The results here are independent of those appearing in part I ([2]). 
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2. P r e l i m i n a r i e s  

As in [3], we fix M a maximal ideal of the ring of algebraic integers R con- 

taining pR, and we let *: S --+ F be the canonical ring homomorphism from 

S = {a/3[(~, 3 E R, ~ C R - M} onto the field F = RIM.  Also, S is a local ring 

with maximal ideal P. (See Chapter 2 of [3] for more details.) Our notation for 

blocks also follows [3]. 

We start with an elementary lemma. 

(2.1) LEMMA: Suppose that G has a normal Sylow p-subgroup P and let K = 

Op, (G). Let e be a complete set of representatives of orbits of the G-action on 

Irr(K). 

(a) The sets Irr(G[0), where 0 E O, are all the different blocks of G. 

(b) Suppose that G / P  is abelian. If  O E O, then the number of p~-degree 

irreducible characters of G lying over 0 does not depend on O. The same happens 

with the number of irreducible Brauer characters of G lying over O. 

Proof: By the Schu~Zassenhaus theorem, we have that CG(P) = Z(P) • K. 

Let B be a block of G. Now, by Corollary (9.3) of [31, we have that  all Irr(B) 

lie over a unique 0 E O. If T is the stabilizer of 0 in G, by the Fong Reynolds 

Theorem (9.14) of [3], we have that there is a unique block b of T such that 

Irr(b) C Irr(TI0 ) such that  Irr(B) = {Ca I r e Irr(b)}. Also P C_ T. Therefore 
Op,(T) C_ C a ( P )  and we conclude that Op,(T) = K. By Fong's theorem (10.20) 

of [3], we have that Irr(b) = Irr(T]0), and therefore B = Irr(G]0) by the Clifford 

correspondence (Theorem (6.11) of [1]). Finally, given 7/ E O, there is a block 

covering ~? (for instance, by Theorem (9.2) of [3]), and part (a) easily follows. 

For part (b), notice that  if G / P  is abelian, then 0 extends to G. (Since 

K N P  = 1, we may see 0 as a character of G/P.) Let v C Irr(G) be any 

extension of 0. By Gallagher's theorem (Corollary (6.17) of [1]), we have that 

Irr(G]0) = {v6]5 C Irr(G/K)}. Therefore, the number of p'-degree irreducible 

characters of G lying over 0 is the number of p~-degree irreducible characters of 

G/K. 
Finally, since the irreducible Brauer characters of G have P in their kernel, 

we see that the number of those lying over 0 is just the number of irreducible 

characters of G lying over 1p • 0. This number is I G : P K  I. I 

In the next result, we obtain information on the character table of groups G in 

which N c ( P ) / P  is abelian. As we will point out, this is not enough to guarantee 

a converse. 
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(2.2) THEOREM: Let G be a finite group, let P �9 Sylp(G) and assume that 

NG(P) /P  is abelian. 

(a) Assume the Alperin-McKay conjecture for G. If B is a p-block of G of 

maxima/defect  and Bo is the principal block, then the number of irreducible 

characters of p'-degree of B and Bo coincide. 

(b) Whenever x �9 G is a p-regular element of G having conjugacy class size 

not divisible by p and X �9 Irr(G) has p'-degree, then X(x) ~ 0 rood 7 ~. 

Proof: Write Irrp, (B) for the pt-degree characters of the block B of G. Let 

b �9 BI(NG(P)) be the Brauer first main correspondent of B. Also, let b0 be 

the principal block of NG(P).  Then, by the Alperin McKay conjecture, we have 

that I Irrp,(B)[ = I Irrp,(b)[ and [Irrp,(B0)[ = ]Irrp,(b0)l. By Lemma (2.1.b), we 
have that ] Irrp, (b)]-- I Irrp, (b0)[, and the first part of the theorem follows. 

Suppose now that x is p-regular such that P C_ CG(x). Let K = cla(x). By 

Lemma (4.16) of [3], we have that K N CG(P) is a conjugacy class of NG(P). 

Now, since NG(P) /P  is abelian, notice that x �9 Z(NG(P)).  Therefore, we 

have that K N CG(P) = {x}. Let X �9 Irr(G) be of p'-degree, and assume that  

X �9 Irr(B), where B is a block of G of maximal defect. Also, let b �9 BI(Na(P))  
be the Brauer correspondent of B. Since b G = B, we have that  

= 

Now, let r C Irr(b). Since x �9 Z(NG(P)),  we have that r = r where e is 
a p~-root of unity. Now, 

= (V(x)/~(1))* -- e* -~ o. 

Now, since ]Kip = X(1)p = 1, we conclude that  X(x)* ~ 0 mod P, as desired. 
| 

The converse of Theorem (2.2) is not in general true (even if we assume con- 

ditions (a) and (b) for every factor group of G). For instance, if G is a simple 

group having a unique block of maximal defect (the principal block), then the 

only p-regular class of pt-size of G is the identity. (This is a well-known fact; see, 

for instance, Problem (15.8) of [1].) In this case, the hypotheses of Theorem (2.2) 

are automatically satisfied, and NG(P) /P  need not be abelian. (For instance, 

G = Th for p = 7.) 

If G is p-solvable, we have more information on Brauer correspondent blocks 

(and eventually, this is what makes our Theorem A true). 



280 G. NAVARRO Isr. J. Math.  

(2.3) THEOREM: Suppose that G is p-solvable. Let P E Sylp(G) and assume 
that N a ( P ) / P  is abelian. 

(a) I f  B is up-block of G of maximal defect and B0 is the principal block, then 

the number of irreducible Brauer characters of pLdegree of B and Bo coincide. 

(b) Whenever x E G is a p-regular element of G having conjugacy class size 

not divisible by p and ~ E IBr(G) has p'-degree, then ~(x) r 0 mod ;o. 

Proof: Write IBrp, (B) for the p'-degree irreducible Brauer characters of the 
block B. Let b E BI(NG(P)) be the Brauer first main correspondent of B. Also, 

let b0 be the principal block of NG(P) .  Then, by Theorem (2.2.ii) of [4], we have 

that I IBrp,(B)I = l IBrp,(b)l and I IBrp,(Bo)l = I IBrp,(b0)l . By Lemma (2.1), we 
have that I IBrp,(b)l = I IBrp,(bo)h and part (a) follows. 

Now, suppose that ~ E IBr(G) has p~-degree. By the Fon~Swan theorem, 
let )C E Irr(G) be a lifting of ~. Then ~(x) = X(x) and part (b) follows from 

Theorem (2.2.b). I 

3. P r o o f  o f  T h e o r e m  A 

This is the precise algorithm that enable us to decide from the character table of 

G if the group N G ( P ) / P  is abelian. 

(3.1) THEOREM: Let G be a p-solvable group and let P E Sylp(G). Then 
N G ( P ) / P  is abelian iff for every factor group G of G the following conditions 

are satistied: 
(a) If  B is a p-block of G of maximal defect and Bo is the principal block of 

G, then the number of irreducible Brauer characters of p'-degree of B and Bo 
coincide. 

(b) Whenever x E G is a p-regular element of G having conjugacy class size 

not divisible by p and ~o E IBr(G) has p'-degree, then ~(x) # 0 mod P.  

In order to prove Theorem (3.1), we need one more lemma. 

(3.2) LEMMA: Suppose that N ,~ G with G / N  abelian. 

(a) Let 0 E Irr(N). Then I Irr(GI0)l = IG: N I lifo extends to G. 

(b) Suppose that N is abelian. Then every 0 E Irr(N) extends to G if[ G is 

abe//an. 

Proof: (a) If 0 extends to G, this is clear by Gallagher's theorem (Corollary 
(6.17) of [1]). For the converse, let T be the stabilizer of 0 in G. Then 

I a :  NI = I Irr(al0)l = I Irr(TI0)l 
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by the Clifford correspondence. By Problem (11.10) of [1], we have that I Irr(TIO)l 

is the number of certain special conjugacy classes of TIN. In particular, 

Ilrr(T]0)l _< IT: N] _< ]G: NI, 

and we deduce that 0 is G-invariant. Now, since 

IG : NI= E (X(1)/O(1))2' 
xelrr(GI0) 

and IIrr(al0)l = I a :  NI, we deduce tha t  X(1) = 0(1) for all X �9 Irr(GI0)- This 

proves part (a). 

(b) If G is abelian, then every 0 �9 Irr(N) extends to G. Assume now that  

every 0 �9 Irr(N) extends to G. Then every 0 �9 Irr(N) is G-invariant, and it 
follows from Clifford's theorem that 

I r r ( a ) =  [.J Irr(GI0 ) 
OElrr(N) 

is a disjoint union. Hence, the number of conjugacy classes of G is 

k(a) = INlla : N I -- tGI, 

and we deduce that  G is abelian. | 

Proof of Theorem (3.1): Suppose first that NG (P)/P is abelian. If N,~ G, then 

NG/N (PN/N)/PN/N "~ Na (P)N/PN ~ Nc(P)/PNN (P) 

is abelian. Now, Theorem (2.3) applied to the factor groups of G proves one 

direction of Theorem (3.1). 

Suppose now that  for every factor group G of G we have that the conditions 

(a) and (b) are satisfied. We prove that NG(P)/P is abelian by induction on 

IGI. Hence if 1 < N,~G, we have that NG(P)/PNN(P) is abelian by induction. 

In particular, we may assume that Op(G) = 1. 
Now, let N = Op,(G) > 1 and recall that Na(P)/PNN(P) is abelian. We 

claim that  NN (P) -- Op, (NG (P)). Of course, NN (P) C_ Op, (NG (P)). However, 
Op,(Na(P)) C_ N, by a standard result on p-solvable groups, and the claim 

follows. Now, let O be a complete set of representatives of NG(P)-orbits on 

Irr(K), where K = NN(P).  Given 0 e O, let Bo = (bo) a, where bo is the unique 

block of N a ( P )  whose irreducible characters lie over 0 (by Lemma (2.1)). By 

the Brauer First Main theorem, we have that the /?o ' s  are all the blocks of G 
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of maximal defect. Now, by hypothesis, and Theorem (2.2.ii) of [4], we have 

that I IBrp,(b0)l = I IBrp,(bl)l. Now, since the irreducible Brauer characters of 

N o ( P )  contain P in their kernel, we have that I IBrp, (b0)l -- I I r r (Na(P)  l lp x 0)1. 

Therefore, we conclude that 

IIrr(Na(P)llp x 0)1 = I I r r (Na(P) l lpxK)l .  

Since N a ( P ) / P K  is abelian, we have that 

IIrr(Na(P)llp x 0)1 = I N a ( P ) :  P x K I. 

By Lemma (3.2.a), we conclude that the character 1p x 0 extends to N a ( P )  for 

every 0 C Irr(K).  

Now, we claim that K is abelian. Otherwise, there exists 0 E Irr(K) with 

0(1) > 1. By Burnside's theorem on zeros, we may find x E K such that  O(x) = O. 
Notice that  [P, x] = 1 and x is p-regular. Let C be the conjugaey class of x, so 

that  ICIp = 1. Also, L = C A C a ( P )  is a eonjugacy class of N a ( P )  (by Lemma 

(4.16) of [3]) with ILIp -- 1. Now, let r �9 I r r (Na(P) )  be an extension of 0. In 

particular, r is a height zero character of the block bo. Also, r  = 0. Now, let 

be an irreducible Brauer character of height zero in Bo, and let )r �9 Irr(B0) be 

a lifting of ~. Now, by the Brauer correspondence, we have that 

IClx(x)/)c(1) = IL[r162 = 0 m o d P .  

Since IClp = X(1)p = 1, we deduce that  

Therefore, 

)~(x) = 0 m o d P .  

c2(x ) = 0 mod P,  

and this is a contradiction which proves the claim. 

Hence, we have that P K / P  is an abelian group, with N a ( P ) / K P  abelian, such 

that all irreducible characters of P K / P  extend to N o ( P ) .  By Lemma (3.2.b), 

we conclude that Na(P) /P  is abelian, as desired. | 

Next is Theorem A of the Introduction. 

(3.3) THEOREM: Suppose that G is p-solvable and let P E Sylp(G). Then the 
character table of G determines if NG(P)/P is abelian. 

Proof: We have to prove that the character table of G (ct(G)) determines 

the conditions (a) and (b) of Theorem (3.1). First of all, ct(G) determines the 
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character table of its factor groups. So it suffices to show that ct(G) determines 

(a) and (b) for G. First of all, ct(G) determines the different p-blocks of G. 

(Perhaps, the easiest way to do that  is to apply Theorem (3.19) of [3]. Recall 

that ct(G) determines if an element is p-regular by Higman's theorem (8.21) of 

[1].) Now, the blocks of maximal defect are those having a pr-degree irreducible 

character. Now, by Corollary (10.4) of [3], we can detect the irreducible Brauer 

characters of G of pl-degree. Finally, we can easily check condition (b) from the 

character table. | 

Notice that by the proof of Theorem (3.1), we only need to check conditions 

(a) and (b) for those factor groups of the form G / N  where N is a member of the 

Opp,-series. 
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