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ABSTRACT

Suppose that G is a finite p-solvable group and let P € Syl,(G). In this
note, we prove that the character table of G determines if Ng(P)/P is
abelian.

1. Introduction

One of the classical problems in character theory is to determine what properties
of a finite group G can be read off from its character table.

THEOREM A: Suppose that G is p-solvable and let P € Syl,(G). Then the
character table of G determines if Ng(P)/P is abelian.

Our arguments heavily use a strong form of the Alperin-McKay conjecture for
p-solvable groups which does not hold in general. Consequently, with our present
approach we cannot decide if Theorem A is true or false for every finite group.

The results here are independent of those appearing in part I ([2]).
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2. Preliminaries

As in [3], we fix M a maximal ideal of the ring of algebraic integers R con-
taining pR, and we let *: S — F be the canonical ring homomorphism from
S ={a/Blo,B8 € R, € R— M} onto the field F = R/M. Also, S is a local ring
with maximal ideal P. (See Chapter 2 of 3] for more details.) Our notation for
blocks also follows [3].

We start with an elementary lemma.

(2.1} LEMMA: Suppose that G has a normal Sylow p-subgroup P and let K =
O, (G). Let © be a complete set of representatives of orbits of the G-action on
Irr(K).

(a) The sets Irr(G|6), where 6 € ©, are all the different blocks of G.

(b) Suppose that G/P is abelian. If @ € ©, then the number of p'-degree
irreducible characters of G lying over 8 does not depend on 8. The same happens
with the number of irreducible Brauer characters of G lying over 6.

Proof: By the Schur-Zassenhaus theorem, we have that Cg(P) = Z(P) x K.
Let B be a block of G. Now, by Corollary (9.3) of [3], we have that all Irr(B)
lie over a unique # € O. If T is the stabilizer of # in G, by the Fong—Reynolds
Theorem (9.14) of [3], we have that there is a unique block b of T such that
Irr(b) C Irr(7T|0) such that Irr(B) = {4%| ¢ € Irr(b)}. Also P C T. Therefore
O, (T') C Cg(P) and we conclude that O, (T) = K. By Fong’s theorem (10.20)
of [3], we have that Irr(b) = Irr(T'|@), and therefore B = Irr(G|@) by the Clifford
correspondence (Theorem (6.11) of [1]). Finally, given n € ©, there is a block
covering 7 (for instance, by Theorem (9.2) of [3]), and part (a) easily follows.

For part (b), notice that if G/P is abelian, then 6 extends to G. (Since
K NP =1, we may see § as a character of G/P.) Let v € Irr(G) be any
extension of §. By Gallagher’s theorem (Corollary (6.17) of [1]), we have that
Irr(G|0) = {vé|6 € Irr(G/K)}. Therefore, the number of p’-degree irreducible
characters of G lying over # is the number of p’-degree irreducible characters of
G/K.

Finally, since the irreducible Brauer characters of G have P in their kernel,
we see that the number of those lying over € is just the number of irreducible

characters of G lying over 1p x 6. This number is |G : PK]|. ]

In the next result, we obtain information on the character table of groups G in
which Ng(P)/P is abelian. As we will point out, this is not enough to guarantee
a converse.
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(2.2) THEOREM: Let G be a finite group, let P € Syl,(G) and assume that
Ng(P)/P is abelian.

(a) Assume the Alperin-McKay conjecture for G. If B is a p-block of G of
maximal defect and By is the principal block, then the number of irreducible
characters of p’-degree of B and By coincide.

(b) Whenever x € G is a p-regular element of G having conjugacy class size
not divisible by p and x € Irr(G) has p’-degree, then x(x) # 0 mod P.

Proof: Write Irr,y(B) for the p’-degree characters of the block B of G. Let
b € BI(Ng(P)) be the Brauer first main correspondent of B. Also, let by be
the principal block of NG (P). Then, by the Alperin-McKay conjecture, we have
that |Irry (B)| = |Irrp(b)| and |Irrp (Bo)| = |Irry (bo)|. By Lemma (2.1.b), we
have that |Irry (b)| = | Irry (bo)|, and the first part of the theorem follows.

Suppose now that x is p-regular such that P C Cg(z). Let K = clg(x). By
Lemma (4.16) of [3], we have that K N C¢(P) is a conjugacy class of Ng(P).
Now, since Ng(P)/P is abelian, notice that © € Z(Ng(P)). Therefore, we
have that K N Cg(P) = {z}. Let x € Irr(G) be of p'-degree, and assume that
x € Irr(B), where B is a block of G of maximal defect. Also, let b € BI(Ng(P))
be the Brauer correspondent of B. Since b% = B, we have that

Ap(K) = Mo(@).

Now, let ¢ € Irr(b). Since x € Z(N¢(P)), we have that ¢ (x) = ¢(1)e, where € is
a p'-root of unity. Now,

(

Now, since |K|, = x(1), = 1, we conclude that x(z)* # 0 mod P, as desired.
||

Kx(z)/x(1)" = (¥(x)/¥(1))* = €" #0.

The converse of Theorem (2.2) is not in general true (even if we assume con-
ditions (a) and (b) for every factor group of G). For instance, if G is a simple
group having a unique block of maximal defect (the principal block), then the
only p-regular class of p-size of G is the identity. (This is a well-known fact; see,
for instance, Problem (15.8) of [1].) In this case, the hypotheses of Theorem (2.2)
are automatically satisfied, and N¢(P)/P need not be abelian. (For instance,
G=Thforp=17.)

If G is p-solvable, we have more information on Brauer correspondent blocks
(and eventually, this is what makes our Theorem A true).
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(2.3) THEOREM: Suppose that G is p-solvable. Let P € Syl,(G) and assume
that Ng(P)/P is abelian.
(a) If B is a p-block of G of maximal defect and By is the principal block, then
the number of irreducible Brauer characters of p'-degree of B and By coincide.
(b) Whenever © € G is a p-regular element of G having conjugacy class size
not divisible by p and ¢ € IBr(G) has p'-degree, then ¢(x) # 0 mod P.

Proof:  Write IBr,(B) for the p’-degree irreducible Brauer characters of the
block B. Let b € BI(Ng(P)) be the Brauer first main correspondent of B. Also,
let by be the principal block of Ng(P). Then, by Theorem (2.2.ii) of [4], we have
that |IBr, (B)| = | IBry (b)| and |IBr, (Bo)| = | IBry (bo)|. By Lemma (2.1), we
have that |IBry (b)| = |IBr, (bo)|, and part (a) follows.

Now, suppose that ¢ € IBr(G) has p’-degree. By the Fong-Swan theorem,
let x € Irt(G) be a lifting of ¢. Then ¢(z) = x(z) and part (b) follows from
Theorem (2.2.b). [

3. Proof of Theorem A

This is the precise algorithm that enable us to decide from the character table of
G if the group Ng(P)/P is abelian.

(3.1) THEOREM: Let G be a p-solvable group and let P € Syl,(G). Then
N¢g(P)/P is abelian iff for every factor group G of G the following conditions
are satisfied:

(a) If B is a p-block of G of maximal defect and By is the principal block of
G, then the number of irreducible Brauer characters of p'-degree of B and By
coincide.

(b) Whenever = € G is a p-regular element of G having conjugacy class size
not divisible by p and ¢ € IBr(G) has p'-degree, then (x) # 0mod P.

In order to prove Theorem (3.1), we need one more lemma.

(3.2) LEMMA: Suppose that N <G with G/N abelian.

(a) Let 6 € Irr(N). Then |Irr(G|0)| = |G : N| iff 8 extends to G.

(b) Suppose that N is abelian. Then every 8 € Irr(N) extends to G iff G is
abelian.

Proof: (a) If 6 extends to G, this is clear by Gallagher’s theorem (Corollary
(6.17) of [1]). For the converse, let T be the stabilizer of 6 in G. Then

|G : N| = | kr(G)9)| = | Irr(T|6)]
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by the Clifford correspondence. By Problem (11.10) of [1}, we have that | Irr(T|6)|
is the number of certain special conjugacy classes of T/N. In particular,

|Bx(T10)| < IT: N| < |G : N,
and we deduce that 8 is G-invariant. Now, since

IG:Nl= Y (x(1)/6()?
XEIrr(G6)
and |Irr(G|6)| = |G : N|, we deduce that x(1) = 6(1) for all x € Irr(G|8). This
proves part (a).
(b) If G is abelian, then every 8 € Irr(N) extends to G. Assume now that
every 6 € Irr(N) extends to G. Then every 6 € Irr(N) is G-invariant, and it
follows from Clifford’s theorem that

Irr(G) = U Irr(G16)

gclrr(N)

is a disjoint union. Hence, the number of conjugacy classes of G is
k(G) = N|IG - N[ =G|,
and we deduce that G is abelian. |

Proof of Theorem (3.1): Suppose first that Ng(P)/P is abelian. If N <G, then
N¢/n(PN/N)/PN/N = Ng(P)N/PN = Ng(P)/PNy(P)

is abelian. Now, Theorem (2.3) applied to the factor groups of G proves one
direction of Theorem (3.1).

Suppose now that for every factor group G of G we have that the conditions
(a) and (b) are satisfied. We prove that Ng(P)/P is abelian by induction on
|G|. Hence if 1 < N <G, we have that Ng(P)/PNy(P) is abelian by induction.
In particular, we may assume that O,(G) = 1.

Now, let N = O, (G) > 1 and recall that Ng(P)/PNy(P) is abelian. We
claim that Ny (P) = Oy (Ng(P)). Of course, Ny (P) C Op (Ng(P)). However,
O, (Ng(P)) C N, by a standard result on p-solvable groups, and the claim
follows. Now, let © be a complete set of representatives of N (P)-orbits on
Irr(K), where K = N (P). Given § € ©, let By = (bg)®, where by is the unique
block of Ng(P) whose irreducible characters lie over # (by Lemma (2.1)). By
the Brauer First Main theorem, we have that the Bg’s are all the blocks of G
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of maximal defect. Now, by hypothesis, and Theorem (2.2.ii) of [4], we have
that |IBry (bg)] = |IBry (b1)|. Now, since the irreducible Brauer characters of
N¢(P) contain P in their kernel, we have that | IBr, (bp)| = |Irr(Ng(P)|1p x 6)|.
Therefore, we conclude that

[Irr(Ng(P)|1p x 0)] = [Irr(Ng(P)|1px k)|
Since Ng(P)/PK is abelian, we have that
[Irr(Ng(P)|1p x 0)| = [Ng(P) : P x K|.

By Lemma (3.2.2), we conclude that the character 1p x 6 extends to Ng(P) for
every 0 € Irr(K).

Now, we claim that K is abelian. Otherwise, there exists § € Irr(K) with
6(1) > 1. By Burnside’s theorem on zeros, we may find « € K such that 8(x) = 0.
Notice that [P,z] = 1 and z is p-regular. Let C be the conjugacy class of z, so
that |C|, = 1. Also, L = C'N Cg(P) is a conjugacy class of Ng(P) (by Lemma
(4.16) of [3]) with |[L|, = 1. Now, let ¢ € Irr(Ng(P)) be an extension of 6. In
particular, 1 is a height zero character of the block bg. Also, ¥(z) = 0. Now, let
v be an irreducible Brauer character of height zero in By, and let x € Irr(By) be
a lifting of p. Now, by the Brauer correspondence, we have that

|Clx(x)/x(1) = |LI¥(z)¥(1) = 0Omod P.
Since |C|, = x(1)p = 1, we deduce that
x(z) = 0modP.

Therefore,
@(z) =0mod P,

and this is a contradiction which proves the claim.

Hence, we have that PK/P is an abelian group, with Ng(P)/K P abelian, such
that all irreducible characters of PK/P extend to Ng(P). By Lemma (3.2.b),
we conclude that N¢(P)/P is abelian, as desired. ]

Next is Theorem A of the Introduction.
(3.3) THEOREM: Suppose that G is p-solvable and let P € Syl,(G). Then the
character table of G determines if Ng(P)/P is abelian.

Proof: We have to prove that the character table of G (ct(G)) determines
the conditions (a) and (b) of Theorem (3.1). First of all, ct(G) determines the
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character table of its factor groups. So it suffices to show that ct(G) determines
(a) and (b) for G. First of all, ct(G) determines the different p-blocks of G.
(Perhaps, the easiest way to do that is to apply Theorem (3.19) of [3]. Recall
that ct(G) determines if an element is p-regular by Higman’s theorem (8.21) of
[1].) Now, the blocks of maximal defect are those having a p’-degree irreducible
character. Now, by Corollary (10.4) of [3], we can detect the irreducible Brauer
characters of G of p’-degree. Finally, we can easily check condition (b) from the
character table. |

Notice that by the proof of Theorem (3.1), we only need to check conditions
(a) and (b) for those factor groups of the form G/N where N is a member of the
Oy, -series.
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